23 Prague Geotechnical Lecture Praha 2015

A particle-level review of

Soil Behavior

- macroscale implications -

Terzaghi (1883-1963)

"... Coulomb... purposely ignored the fact that [soils] consist of individual grains

Coulomb's idea proved very useful as a working hypothesis but it developed into an obstacle against further progress

[let's start] again from the elementary fact that [soils] consist of individual grains"

Terzaghi (1920, ENR)

Formation

Size -> Forces

Shape

Soil Classification

Diagenesis

Shear strength

Stiffness

Pores

Permeability

Mixed fluids

Michelangelo

Mechano-Genesis: Gravels, Sands....Silts

crushed granite

100µm

Ottawa sand

Thermo-Genesis: Ash

fly ash

Thermo-Genesis: Ash

volcanic ash

Bio-Genesis: Diatoms

The Diatoms –1990

Chemo-Genesis: Clays

kaolinite

illite

smectite

http://www.minersoc.org

Formation

Size -> Forces

Shape

Soil Classification

Diagenesis

Shear strength

Stiffness

Pores

Permeability

Mixed fluids

Particle Forces – Spherical Particles

Skeletal	$\underline{N} = \sigma' d^2$
Weight	$W = (\pi G_s \gamma_w / 6) d^3$
Buoyant	$\mathbf{U} = \mathbf{Vol} \cdot \gamma_{w} = (\pi \gamma_{w} / 6)\mathbf{d}^{3}$
Hydrodynamic	$F_{drag} = 3\pi \mu \nu d$
Capillary	$F_{cap} = \pi T_s d$
Electrical	
attraction	$Att = \frac{7 t_h}{24t^2} d$
repulsion	$Rep = 0.0024 \sqrt{c_o} e^{-10^8 t \sqrt{c_o}} d$
Cementation	$T = \pi \sigma_{ten} td$

Force Balance: Deformation & Strength

Fine-Grained Fabric: Fluid dependent

kaolinite

Formation

Size -> Forces

Shape

- **Soil Classification**
- Diagenesis
- Shear strength
- Stiffness
- Pores
- Permeability
- **Mixed fluids**

Particle Shape

alignment

interlocking

surface µ

Coarse Grained: Shape + Relative Size

0.9						
0.7		٠			•	
0.5	•	•	•	٠	•	
0.3	•	•			-	
	0.1	0.3	0.5	0.7	0.9	

(Youd, 1973; see also Maeda, 2001)

Summary: Genesis → Size – Shape – Forces

Formation

Size -> Forces

Shape

Soil Classification

Diagenesis

Shear strength

Stiffness

Pores

Permeability

Mixed fluids

Classification: Fines

(Pass #200)

Plasticity LL_{brine}

Formation

- Size -> Forces
- Shape
- **Soil Classification**
- Diagenesis
- **Shear strength**
- Stiffness
- Pores
- Permeability
- **Mixed fluids**

Reactive Fluid Transport

Volcanic Ash Soils: Formation

Experimental Results

DEM Simulation dR/dt=f(N)

Natural Sediments

Cartwright (2005)

Precipitation – Pore Habit

heterogeneous nucleation

patchy (ripening)

segregated (lenses)

Precipitation – Pore Habit

at contact

surface coating

homogeneous nucleation

heterogeneous nucleation

patchy (ripening)

segregated (lenses)

Formation

Size -> Forces

Shape

Soil Classification

Diagenesis

Shear strength

Stiffness

Pores

Permeability

Mixed fluids

coal mine - Australia - guardian.co.uk

Sediment Response During Shear

Constant Volume Shear: "Critical State"

Rot. frustration: Coordination \downarrow

Free (high e) Frustrated (low e)

Chain Buckling: Coordination↑

reduce rotational frustration avoid contact slip

Constant Volume Friction vs. Roundness

 Φ_{cv}

Dilatency Angle

(Been and Jefferies 1985)

Ψ

Peak Friction Angle

Taylor 1948:
$$tan \phi_p = tan \phi_{cv} + tan \psi$$

Bolton 1986:
$$\phi_p = \phi_{cv} + 0.8\psi$$

Residual Friction Angle - very large strains

particle alignment

size segregation

shape segregation

Residual Friction Angle ϕ_r

Platy particles

Precipitation \rightarrow ?

distributed cementation

patchy cementation

Note: increase in stiffness, strength, dilation with Shvd

pore habit affect dilation

Frictional strength anisotropy

$$\phi_{E}$$
=1.0 to 1.5 ϕ_{C}

Formation

Size -> Forces

Shape

Soil Classification

Diagenesis

Shear strength

Stiffness

Pores

Permeability

Mixed fluids

	<i>Classical (1st order)</i> Terzaghi & Peck (1948) Schofield & Wroth (1968)	$e = e_{1kPa} - C_c \log\left(\frac{\sigma'}{1kPa}\right)$		
Semi-log	<i>Cubic (3rd order) (high-stress correction)</i> Burland (1990)	$e = e_{ref} - \alpha \cdot \log\left(\frac{\sigma'}{\sigma_{ref}}\right) + \beta \cdot \left[\log\left(\frac{\sigma'}{\sigma_{ref}}\right)\right]^3$		
	Modified (low and high stress asymptotes	$\mathbf{e} = \mathbf{e}_{c} - \mathbf{C}_{c} \log \left(\frac{1kPa}{\sigma' + \sigma_{L}} + \frac{1kPa}{\sigma_{H}}\right)^{-1}$		
Power	<i>From gas to soil</i> Hansen (1969); Butterfield (1979); Juárez- Badillo (1981); Houlsby & Wroth, (1991); Pestana & Whittle (1995)	$\mathbf{e} = \mathbf{e}_{\mathrm{H}} + \left(\mathbf{e}_{\mathrm{L}} - \mathbf{e}_{\mathrm{H}}\right) \left(\frac{\boldsymbol{\sigma}' + \boldsymbol{\sigma}_{\mathrm{c}}'}{\boldsymbol{\sigma}_{\mathrm{c}}'}\right)^{-\beta}$		
Exponential	Gompertz function (classical exp: $\beta=1$) Gregory et al. (2006) Cargill (1984 – $\beta=1$)	$\mathbf{e} = \mathbf{e}_{\mathrm{H}} + \left(\mathbf{e}_{\mathrm{L}} - \mathbf{e}_{\mathrm{H}}\right) \cdot \exp^{-\left(\frac{\sigma'}{\sigma_{\mathrm{c}}}\right)^{\beta}}$		
Hyperbolic	Ramberg-Osgood (classical hyperbolic: β =1)	$e = e_{L} - (e_{L} - e_{H}) \frac{1}{1 + \left(\frac{\sigma_{c}}{\sigma'}\right)^{\beta}}$		
Arctangent	S-shaped function G. Goldsztein	$\mathbf{e} = \mathbf{e}_{\mathrm{L}} + \frac{2}{\pi} \left(\mathbf{e}_{\mathrm{L}} - \mathbf{e}_{\mathrm{H}} \right) \arctan \left[- \left(\frac{\sigma'}{\sigma_{\mathrm{c}}} \right)^{\beta} \right]$		

Oedometer?

Small Strain Stiffness

1: Fabric change

2: Contact deformation

Velocity-Stress: Contact + Fabric

Cementation Controlled Stiffness

$$\log\left(\frac{\sigma'}{kPa}\right)$$

Sampling effect

Formation

Size -> Forces

Shape

Soil Classification

Diagenesis

Shear strength

Stiffness

Pores

Permeability

Mixed fluids

D. Frost

Pore Size Distribution

Mean of d [micron]

Formation

- Size -> Forces
- Shape
- **Soil Classification**
- Diagenesis
- Shear strength
- Stiffness
- Pores

Permeability

Mixed fluids

Leonardo's Parachute

Pore Network (Poiseuille flow)

Log (d_{pore}/micron)

preferential flow along interconnected large pores

Permeability during compression

Formation

- Size -> Forces
- Shape
- **Soil Classification**
- Diagenesis
- **Shear strength**
- Stiffness
- Pores

Permeability

Mixed fluids

BBC News In pictures Visions of Science.jpg

Evolution

Forcing Gas Into Sediment

Gas-Driven Fracture

Invasion vs. Localization

high effective stress

low effective stress

Formation Size
→ Forces Shape **Soil Classification** Diagenesis Shear strength **Stiffness** Pores Permeability **Mixed fluids**

Repetitive Loads

Leonardo (1452- 1519)

Instability → Localization

Strain localization shear band compaction band

Grains migration

clogging piping erosion sand production

Fluids

viscous fingering density tears

Fluid-driven

desiccation cracks gas or oil-driven hydraulic fracture

Lenses ice & hydrate

Dissolution shear in contraction piping & wormholes

Thank you